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I. Introduction

The purpose of this paper is to study the behavior of

solutions of a nonlinear system

t
(1) x(t) = f(t) + f a(t,$) (x(s) + E;(s,x(s)))ds

0

given certain information concerning the corresponding linear

system

t
(2) y(t) = f(t) + f a(t,$)y(s)ds.

0

These equations will be studied in the abstract form

(N)	 x = f + T(x + g(x))

and

(L)	 y = f + Ty

where x,y and f are elements of a Frechet space . , T: _F-- ,W

is a continuous linear map and g:-F-4 JV is a nonlinear map. Let
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X	 be i1. I j nC,or	 of (L)	 Js	 1x1

admissible w.r.t. 	 (X) X) that is for each f e X	 equation (I,)

admits a solution	 y e X. The problem is to show that (N) also

has a solution x in X.^

For extunlp_le, it is easy to give conditions on f^ a and

g which insure that equation (1) admits a unique continuous solu-

tion x(t). It is much harder to show that x(t) is bounded on

the interval R+ = (t: 0 s t < oo). This problem may be placed in

the abstract setting above if one defines .F = C(R+ ) (with the

topology of aniform convergence on compact subsets of R^)^

X = BC (R) = (cp E C (1t r ) : T is bounded on R) and

t
(3)	 f a(t,$)cp(s)ds,	 d cp e	 .

0

The key assumption that (L) is admissible w.r.t. 	 (X^X) means

that for each f in BC(R+ ) the solution y(t) of (2) is in

BC(R ). In other words, one has admissibility if and only if the

linear system (2) is "bounded input - bounded output stable".

Admissibility has been studied by many authors. The idea

seems to have originated with Massera and Schaffer [1] and has been

applied to integral equations by Corduneanu [2,3] and Antosiewicz

[4]. The results in this paper are closely related to the results

of Corduneanu but are more easily and more widely applicable to

certain problems of the form (1).

P,



2. Main Result.;

Let	 be: ,L Frechot space, that is is both a vector

s pace and a cotaple Le metric s pace with metric p	 uch that

a. vector addition and scH.l.er multiplication are

p-continuous, and

b. p is additively invariant, i.e. p(x,y) = p(x-Y,0).

Let X1 and X2 be linear subspaces of	 which admit norms

11 11 l and 11 112. Assume

(Al) Xi is a B-space under the norm 	 Moreover, 1I 1) i is

stronger than the topology induced from 	 in the sense that if'

li xn - x1l i > 0 as n > oo then x  -a x in -F.

(A2) T: -F --3 W is a continuous linear map such that if I =

identity, map then (I-T): -F —>-F is both one to one and onto.

(A3) f E .9' and g: -9r -a -F.

Lemma 1. If (Al-3) are satisfied then equation (N) is equivalent

to

(V)	 x = y - Rg(x)

where R = I - (I-T) 1 is a continuous linear map of	 into

and y = f - Rf is the solution of (L).

r
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(and so

From the defdnitIon

(1'-T) -1f =. (T-R) f

closed mrtp on 51 x

2re defined on y1r.

also R) is continue

!E

I

of R it follows that(T-K) -4 (T-T) 1.

solves (̀L). Since I - T is continuous,

.^. 9%us (T.-T. ) -1 is closed, linear and

By the closed graph theorem T - R

Dus on	 -W.

Subtracting Tx from both sides of equation (N) and

applying (I-T) -1 one obtains

X = (I-T) 1f + (I-T)"1Tg(x) = (I-R)f + (I-T) 1Tg(x).

Since y = (I-R)f and (I-T) 1T = -R this reduces to equation (V).

The entire calculation is reversible so that (V) and (N) are

equivalent. Q.E.D.

Equation (V) is a"variation of constants" form of equation

(N). For the Volterra integral equation (2) the map T is always a

continuous map. The assumption that I - T is one to one and onto

is just the familiar theorem that linear Volterra integral equations

have unique solutions. Moreover ., the map R will have the form

t
( li )	 Rq)(t) = I r(t,$)q)(s)ds,

0

where r(t .,$) is the resolvent kernel ., i.e. r(t^s) solves the

equation

OP
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t
r(t ) s) ; -a(t,$) + J a(t,u)r(u,9)t111.

S

Once the variation of constants equation (V) is obtai.necl,

it is easy to apply various fixed point theorem a to (V) . First

consider contraction maps. The next definition and Lerwiia fol.loVr

Corduneanu [2].

Definition 1. Let (Al-2) be satisfied. Then the pair (X l ,X2 ) is

called admissible w.r.t. the map R if and only if for each f c X119

Rf c X2.

This admissibility is easily seen to be equivalent to the

assumption that for each f in X1 the solution y of (L) is in

X2 in the special case where X 1 = X2.

Lemma 2. If (Al-2) hold and if (X1.'X2 ) is admissible w.r.t. R

then R is continuous as a linear map of X1 into X21 that is

II RIJ = sup ( I1 RfII 2: Il fil l	 1) < 
00.

Proof. Using -the continuity of R as a map of ,F into _F and

assumption (Al) the conclusion follows immediately by the closed

graph theorem. Q.E.D.

Theorem 1. Suppose (A1 -3) are satisfied and in addition

1P
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(A)4 ) y e X2 	? 2 -^°> Xl alid (Xl ,Xp ) is f^c^t^^ _^ible w.r.t. R.

(A>) allicre ex:i sts	 Cx > 0	 and r (0 < ^rl such that if

z, w e X2	 with	 ^I zI l2^ Il Vr ll 2 	 ^'	 r th<.n	 II €f(^)	 - ^(^'T)Iil ;	 2.

If U!IRII < l	 and if	 11 YlI 2 + lIz2II!I	 ,(0)! I l ` r(1-dIR!I)	 then equat on

(N) has a un:i.cluc solution 	 x c X2 such that	 IIxII2 	 r'

Proof. Under these conditions it is easy to see that the right

hand side of equation (N) defines a contraction mapping on the set

(z E X2 : 112112 :-5 r) .	 Q.E.D.

Theorem 2, Let (Al - 1I) be satisfied and assume in addition

(AEA) For each E > 0 there exists 8 > 0 such that if

114 21 IIwII2 ;S8 
then II g ( z) - g(w)'1 1 s E

II
zl - z21I2.

Tf g(0) = 0 then for each sufficiently small r > 0 there exists

> 0 such that if IIYII2	 then equation (N) has a unique solution

X E , X2 with II XI12 s r.

Proof. Pick E1 > 0 such that E1II R II < 1 and pick 51 > 0 such

that 1I g ( z ) - g(w)11l 
`4 E1IIZ -W112 if II Z II 2 , IIwII2 -< bl . If 0 < r s 8l

and if r = r(1 -EIIIRII) then the two inequalities

rJRll s EI IIRII < l ip	 II YI1 2 :-5 r ( 1- EI II R I) )



of thc;	 (1a'o WEtti 2fi(.^:1.

if X l — X2) ThQor c,m 2 iinl0 a e the fo 1, towing result.

Cor01.1-rixy 1,.	 Lot (Al-h) and (,116) k^tM r^G7.^; ^'i cad. 	 If (,,(0) ^ 0 theca

for cac.h suffi c.IknLJy .;Held.). r > 0 thore ekx.; :, ij > 0 such that

if f e Xl and 11 f 1l l	 it thcn equation (N) hl-,q a unique solution

x e X2 with IxIIl 1 r.

'roof. Since	 y = (T-R)f, Il y ll l 	"< (1+ jjR! j )jjfjjl.	 Thus 11y1I 1	is

small if'	 III,	 is small. Q.E.D.

As an application of 'Theorem 2 and Corollary 1 we note

that all of the perturbation results in [5] and [6] are special

cases. The various assumptions on the resolvent r(t J s) are

simnly conditions which insure admissibility.
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3 . "Me iSc h Lu.lor `l'hc:or( m

A convex Vrer-,hcAt	 s,11,Loe is (t Freehot urice such thrLt

every ncJt,̂ iborhoo l of the orlejn contrtinra a convex subnoight.orhooa.

The only prop ,.wty of' a (:)nvex Frechot sl),too which will be needed

here is that the Scha.u&!r Fixed Point 7 bcorem is true in such

•	 spoceN.

Theorem 3. (Al-4) are satisf.ie'^ ;

and the mal) R: _.9'--> -F is a cr)mpa

define Si (v) = (x f Xi : {1x11 i -:^ r)

}-closure of Si (r). Suppose for

g: S2 (r) > Sl (s) .Fcontinuously.

IIRl1 s s r then equation (N) has at

I1 x i1 2 =-! Y..

W is a convex Frechet space

ct operator	 For any r > 0

and let S.(r) be the

some positive ntiunbers r and s;

If y E X2 and if, 11Y!12 +

least one solution x E X2 with

Proof. For any y in Ss (r) define Mcp = y - Rg(cp) . The

assivaptions easily imply that M: S4 (r) -> S2 (r) C S2 (r) with M

--continuous. It remains to show that M('2 (r)) is precompact

in 5.

First note that the ,et W = (g(cp) : (p E 7,M) is .F.-

bounded. Indeed, let U be any.'-neighborhood of the origin.

Since (1(1 1 is stronger than the --topology there exists a

number S> 0 such that if il q)li l s 5 then Cp E U. For any a

with l 
al s- 51s if cp E W C S1 (s) then ll cp Il l = I a l iicp ii 1 s as s 5.



Therof'ore, (A-7 Cie u 3 f' f ul ` 6/,, i. e. W J.9 ^^-bc?Lrr;l^:d.

S:1,nou, W	 is boun l(­.I and	 R: Y--) ^V	 is compact ) R (W) R

M(S2 (r)) a.	 yrucolap, tct. By ohau(kj" s theorem	 M has a fjxoa

point	 x c 52 (x• ). Since x , Mx	 mid	 M	 ;(r) -> ;.' r l	 it fol.l.owr,

that	 x c S2 (r). Q-B.D.

Notice; that if R	 is the 1 yitegral, operator ()+) then

rather weak asstunptioris on a(t,$) easily imply the compactness of

R on F = C(R^). At the same time for most subspaces X i the

compactness of R as a map of X1 into X2 is usually very

difficult to prove (and is often false). Thus Theorem 3 seems to

be a very natural and convenient application of Schaudcr's theorem

for Volterra, equations. Theorem 3 is motivated by and is closely

related to Theorem 2 of Corduneanu [2].

As an application of Theorem 3 we shall give a generalization

of an L2-stability theorem of the type studied by Sandberg [7] and

Zames [8]. Consider a system on n equations of the form

t
(5)	 x(t) = f(t) + f a(t_s)g(s,x(s))ds.	 (t ? 0)

0

Concerning (5) we assume

(Kl) g(t,x) is measurable in (t,x) for t ? 0 and all x and

g(t,x) is continuous in x for each fixed t.

(K2) There exists Y > 0 and a nonsingular, constant, n by n



1

10

matr-4 x A such th,,^t (A 1 ,,(t ) x) - x1 " rI x1 for all (t ) x) .

(K3) a(t) is LI (R,") and the determin ,.nt clot (T-ax^ (s)A) /. 0

for Re s ? 0. Here T = identity matrix and 	 denotcs the

Laplace transform.

(K'+) f is in LP (R^ * ) .
.	 I

For any, matrix W let A(W)	 max (I TI : T is an eigen-

value of W"YW) be the spectral norm of W. Define

a = sup (A((I- ax' (iw)A) -la' (iw)A) : -oo < w < oo) .

Theorem 4. If (5) sati.st ies (Kl-'s) and if yU < 1 then equation

(5) has a solution x(t) e L2 (R+ ) with	 IIxII 2 ;g 	 11,f'I 2.
L	 L

Proof.. Let -F be the spare of locally L2 functions on R+ with

the topology of L2 convergence on compact subsets of R+ . Let

X = X1 = X2 = L2 (1 + ). Equation (3) may be written abstractly as

X = f + T[A lh (x) ] = f + T[x + (A- 1h (x) - X)]

t
where W (t) = f a(t-s)Ag(s)ds. Assumption (K3) implies that

a(t-s)A has a resolvent r(t-s) of class L1 (R+ ) ' c.f. Paley and

Weiener [9, p. 60]. Thus the pair (L2 (R+ ), L2 (R+ )) is admissible

w.r.t. the operator R where

P,
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G

57he Psxseval equation and the convolution theorem for

L 2 -Fourier tre nsforms imply	 ;5 a.

In Theorem 3 let s	 r = (l+ce)!) fjj (1-ay) 
l 

and let

g(cp) - A lh(cp) - cp. Clearly 72 (r)= S2 (r)and if cp s S2(r)

then g((p) e L2 (R+ ) with 11 g(T) II < ^ JTjj . By Theorem 3 equation (5)

has a s-lution x c L2 (R+ ) with jjxj) s r. Q.E.D.

i

0
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Z^. Extensions and. Compar•isonso

Corduneanu [3] studied the nonlinear equation

x = f + Tx + h(x)	 (6)

12

on the Frech,-A space -'-5r

functional. If the pair (,

the equation (N) above may

h(x) = Tg(x). The problem

teresting applications the

C (R ) . Here h, -F-4 ,F i6 a nonlinear

^2.1 X1 ) is admissible wo rt. the map T

be treated using his methods by setting

with this approach is that in many in-

pair (X2,X1) is not admissible w.r.t.

the map T.

Both, points of view may be combined by stu(tyin6 nonlinear

equations of the form

x = f + T(x + g(x)) + h(x) 	 (7)

where (Al-3) are true and ho .W-4 -55	 The variation of constants

formula (V) implies that (7) is equivalent to

X = (I-R)f + (I-R)h(x) - Rg(x).	 (8)

Various conditions may be given to insure that (8) has a solution

in X2. For example ., the method of proof of Theorem 2 is easily

applied in order to prove the following theorem.

OP
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Theorem 5. Let	 (I11-3) be satisfied, f c X 	 and let g, h: X2 -)xr- 1
both satisfy (HII).	 T:f (Xl) X2 )	 is admimsible w.r.t. both	 R	 and

I - R	 then for each sufficiently small 	 c > 0	 there exists	 > 0

such that if it f il l then (7) has a solution	 x c X2	with

I I X I 1 2	 =<-

	 E.

OW
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